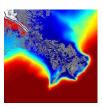


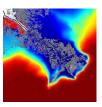
DRAFT Atchafalaya River Long Distance Sediment Pipeline Feasibility Study (Phase I)

Prepared for the Terrebonne Parish Consolidated Government July 2014

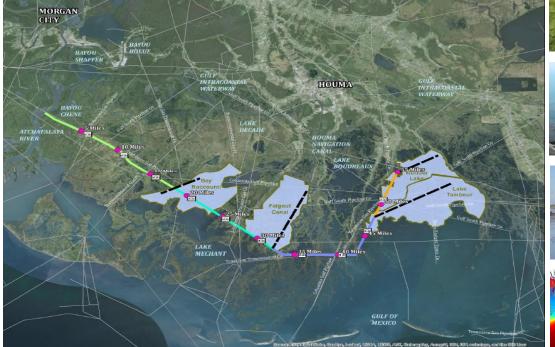
- Engineering, Economics, & Environmental Principles
- Minimization of execution risks
- > Construction industry's highest standards
- > Cost savings vs. conventional methods
- > Consistency with Master Plan objectives
- Parish objectives



- > Coordination with borrow area evaluation team
- Desktop pipeline corridor evaluation and Placement area development
- > Pipeline route reconnaissance and field surveys
- > Pipeline design criteria development
- > Cultural resources and geotechnical tasks
- > Stakeholder coordination and public meeting



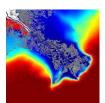
- **Pipeline Corridor**
 - ➤ Intake Structure
 - ➤ Pipeline Right-of-Way
 - Design Criteria
- Placement Areas
- **Cost Analysis**
- Recommendations



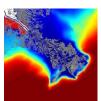
Pipeline Corridor Analysis

> Intake Structure

- ➤ Horseshoe Bend vicinity
- ➤ Intake Structure -Cutter Head and Hopper dredges
- ➤ Cutter Head dredge discharge pipe will directly connects to the intake structure
- ➤ Hopper Dredge (mooring area, re-slurry, and discharge to the intake structure)



- ➤ Tennessee Gas Pipeline (TGP)
- ➤ Columbia Gulf Pipeline (CGP)
- ➤ Bar Channel- Southern Pipeline (BCS)



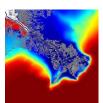
Pipeline Corridor- Selection Criteria

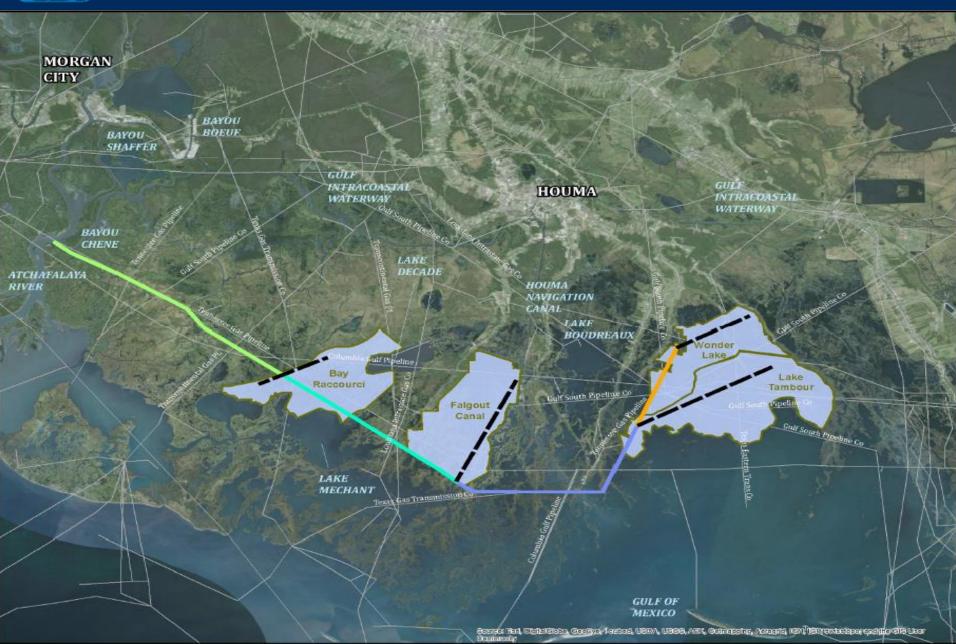
Criteria	TGP	CGP
		.,
Sediment Source	X	X
Right-of-Way	X	X
		.,
Favorable Topography	X	X
Access	X	
	, ·	
Lack of Physical Obstructions	X	
Permitting Constraints	X	X
	,	Λ.
Significant Marsh Creation Impacts	X	
Constructability	X	X
Constituctuality	^	
Parish Objectives	X	
Louisiana State Master Plan	X	

➤ Existing TGP Corridor (~42 miles)

- ≥24 inch gas pipeline (8' to 12' deep)
- ▶40 feet R-O-W
- Channel varying in width (60' to 100') and depth (2' to 6')

➤ Pipeline Crossings: 29





Pipeline Segments

Pipeline Segments- Construction

Proposed Pipeline

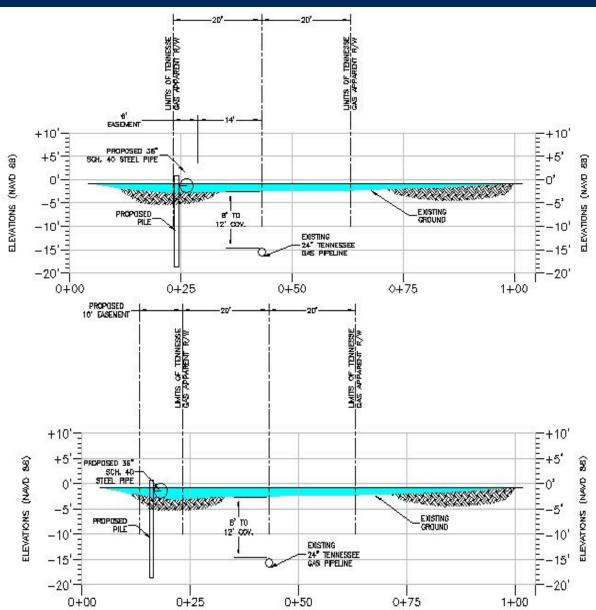
- 42 miles of the existing R-O-W
- 15 miles of additional R-O-W

Four (4) segments

- Segment 1 Bay Raccourci
- Segment 2 Falgout Canal
- ➤ Segment 3 Lake Tambour
- ➤ Segment 4 Wonder Lake
- Funding, sediment availability, Parish's goals
- Each segment may require combinations of pipeline placement

Segment 1 - Bay Raccourci

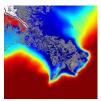
	Miles	No. of Stations
Segment 1	IVIIICS	Stations
Trunk Line	19	
Lateral	5	
Booster Stations		3

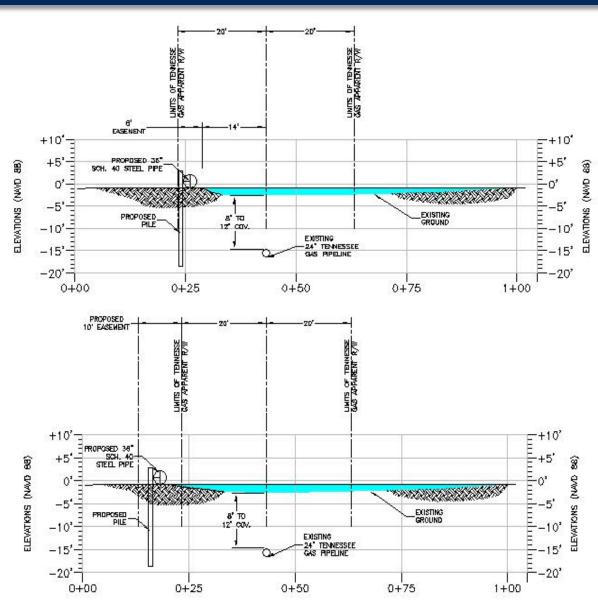


Total Segment lengths and Booster Stations

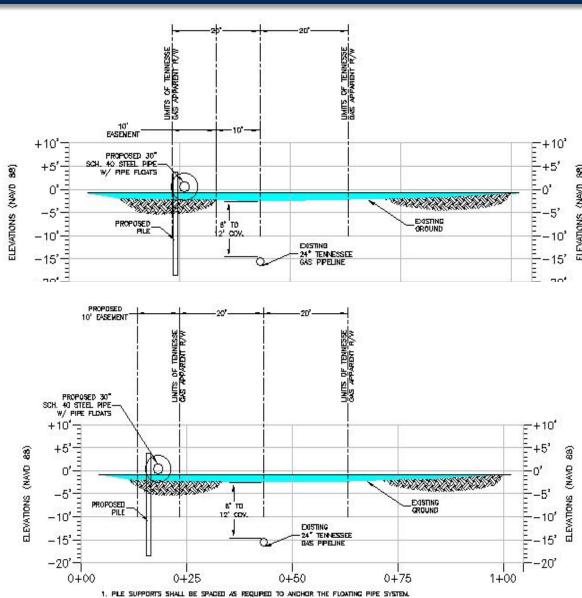
	Miles	No. of Stations
Totals		
Trunk Line (TPG)	42	
Trunk Line (Non-TPG)	15	
Booster Station		10

Pipeline Placement-Typical Sections – Submerged (w/out additional ROW)

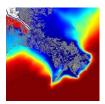


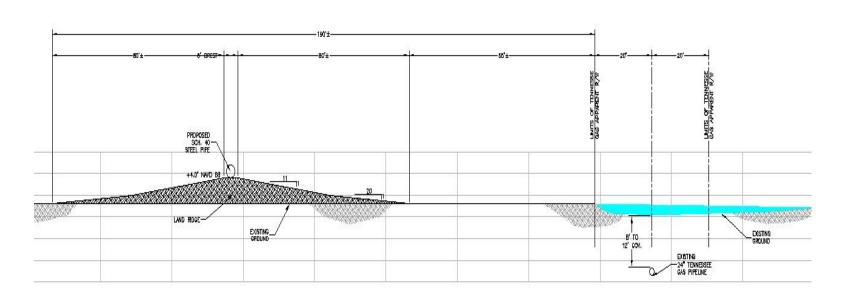


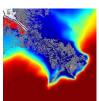
Typical Sections – At-Grade (w/out additional ROW)



Typical Sections – Floating Pipe (w/out additional ROW)



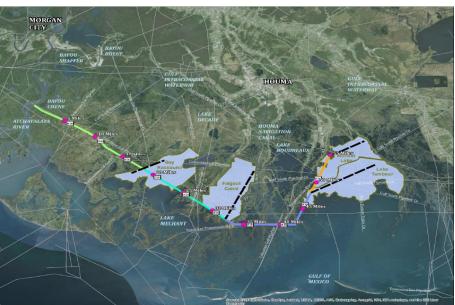




Pipeline & Pump Design Analysis

Pipeline and Pump Design Criteria

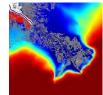
- ➤ **Production Rate:** 40,000 to 50,000 CY/day; Total 50 million cubic yards
- C


- **Pipeline -** 120-foot sections
 - > Pipeline Size: 30" to 36" Diameter
 - > Streamline flow , Velocity (10% above critical velocity) Slurry ratio

Required thickness to avoid frequent rotation and

maintenance

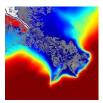
> Two rotations

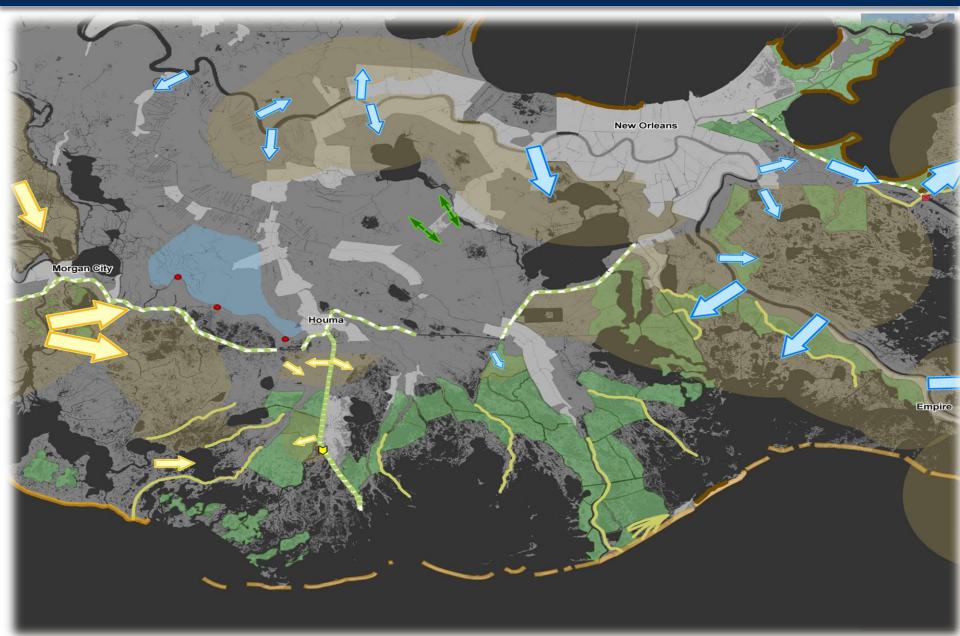

- Booster Pumps
 - > 7,000 to 8,400 HP
 - ➤ Spacing: 5 Miles
 - ➤ Natural gas fuel for the turbine engines

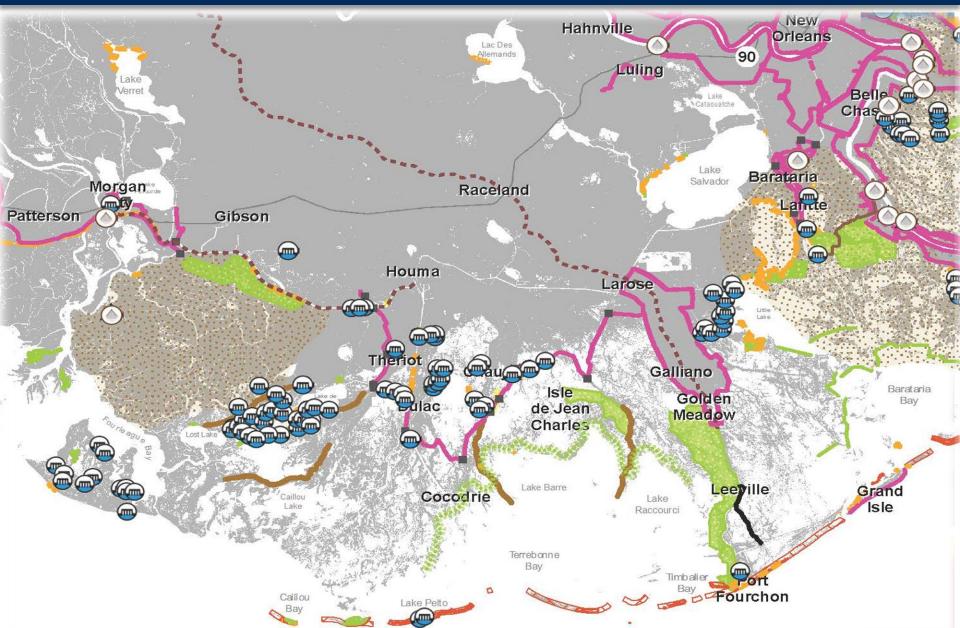
Placement Area Evaluation

Potential Placement Sites

- ➤ Bay Raccourci (~16,000 acres)
- ➤ South of Falgout Canal (~20,000 acres)
- ➤ Vicinity Of Lake Tambour (~26,000 acres)
- Vicinity of Wonder Lake (~15,000 acres)
 - > Fill volume estimate is based on 30% to 60% coverage of the available area







2007 State Master Plan- Project Map

2012 State Master Plan- Project Map

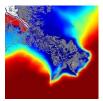
- Placement based on restoration objectives, site conditions, and sediment type
 - > Hydraulic Placement
 - (confined vs. non-confined)
 - > Thin Layer Application

(Spraying sediment, contains high volume of water and fine sediment)

> Slurry Placement

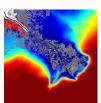
(Sediment with high water content in existing marsh)

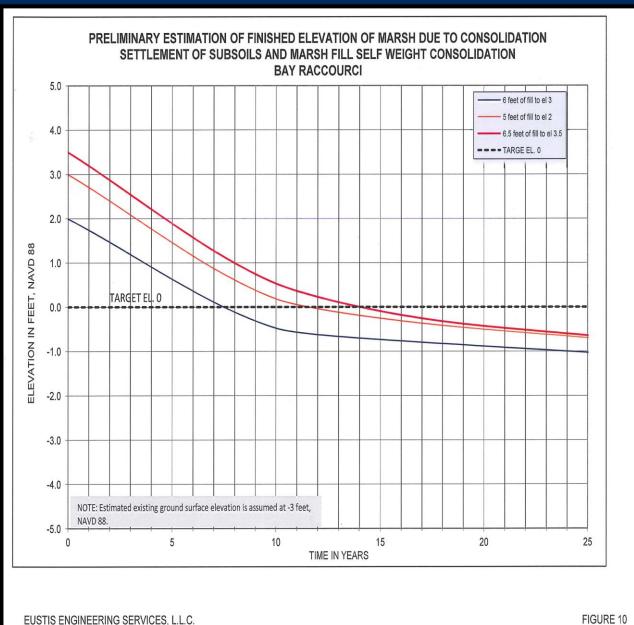
- > Traditional Hydraulic Placement
 - Confined and/or semi-confined will be the preferred placement approach



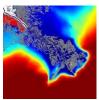
➤ Healthy and sustainable marsh elevation is between +1.0 ft. and 1.3 ft. NAVD

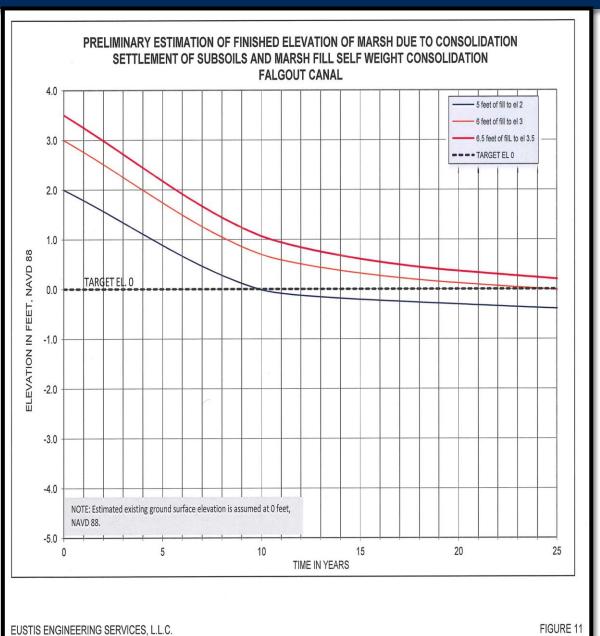
➤ Recommended design elevation for placement areas: +3.0 ft. to +3.5 ft. NAVD



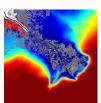


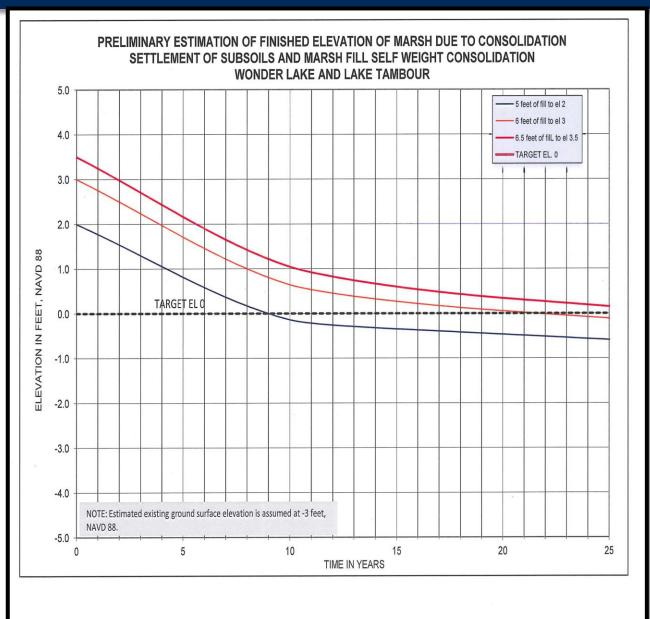
Settlement Curves – Bay Raccourci



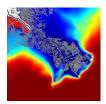


Settlement Curves –Falgout Canal





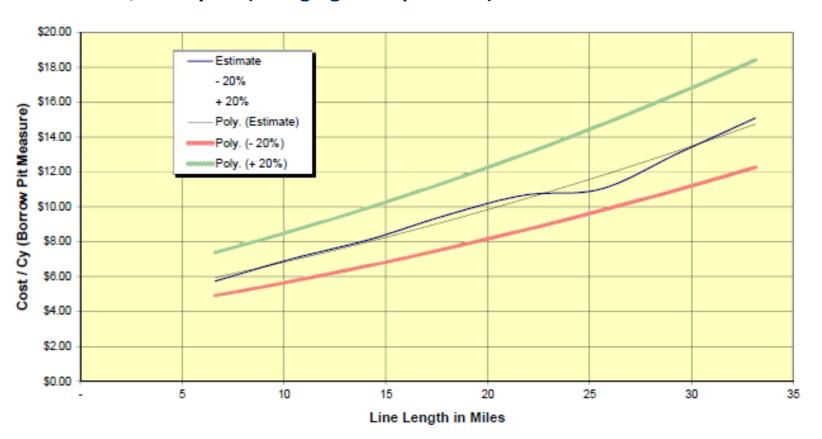
Settlement Curves –Lake Tambour and Wonder Lake



EUSTIS ENGINEERING SERVICES, L.L.C. FIGURE 12

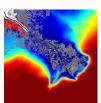
ourci	Area	Estimated Placement Area	Initial Fill Elevation	Existing Average Mudline Elev.	Borrow Material Needed
Bay Raccourci		(Acres)	(NAVD Ft.)	(NAVD Ft.)	(CY)
Ba	All	7500 - 16250	+3.5	0	42,500,000 – 92,000,000
			Initial Fill		
anal	Area	Estimated Placement Area	Elevation	Existing Average Mudline Elev.	Borrow Material Needed
با ن		(Acres)	(NAVD Ft.)	(NAVD Ft.)	(CY)
Falgout Canal	Central	2400 - 5200	+3.0	0	11,750,000 – 25,250,000
_	South	6600 - 14300	+3.0	-1	42,750,000 – 92,500,000
	Area	Estimated Placement Area	Initial Fill Elevation	Existing Average Mudline Elev.	Borrow Material Needed
Lake		(Acres)	(NAVD Ft.)	(NAVD Ft.)	(CY)
Wonder Lake	East	2100 - 4550	+3.0	0	10,250,000 – 22,250,000
Wo	Central	2100 - 4550	+3.0	0	10,250,000 – 22,250,000
	West	3300 - 7150	+3.0	0	16,000,000 – 34,750,000
Lake Tambour	Area	Estimated Placement Area	Initial Fill Elevation	Average Mudline Elev.	Borrow Material Needed
Ta		(Acres)	(NAVD Ft.)	(NAVD Ft.)	(CY)
Lake	All	12000 - 26000	+3.0	-2	97,000,000 – 209,750,000
	Total Area	36,000 – 78,000		Total Borrow	230,500,000 – 498,750,000

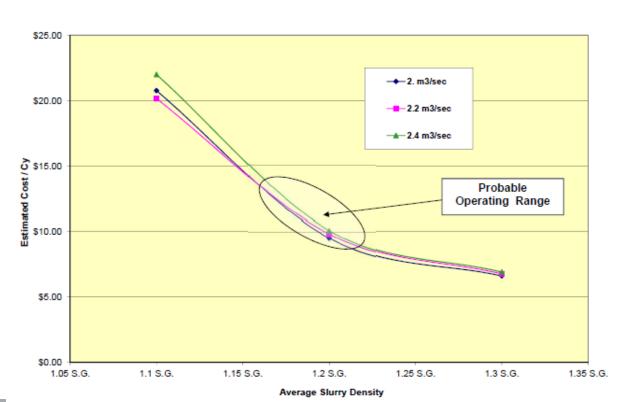
Cost Analysis



Segment 1: Bay Raccourci (~20 Miles)

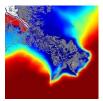
- > \$5 /cubic yard (**dredging** and discharging to intake structure)
- > \$5/cubic yard (**operation** intake structure and boosters)
- > \$10/cubic yard (dredging and operation)





Segment 1: Bay Raccourci (~20 Miles)

- > \$5 /cubic yard (dredging)
- > \$5/cubic yard (operation)
- > \$10/cubic yard (dredging and operation): \$500 million
- > \$6 million (intake structure)
- > \$500 million + \$6 million = \$506million

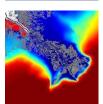


Cost Analysis- Pipeline

Segment 1 - Bay Raccourci

Pipeline Alternatives	Segment 1
Submerged Pipeline Within TGP ROW	\$85,683,000
Submerged Pipeline Outside TGP ROW	\$85,976,000
At Grade Pipeline Within TGP ROW	\$98,203,000
At Grade Pipeline Outside TGP ROW	\$98,496,000
Land Ridge Pipeline	\$99,991,000
Floating Pipeline Within TGP ROW	\$134,075,000
Floating Pipeline Outside TGP ROW	\$134,367,000

- Cost includes: Trunk line, laterals, booster stations, R-O-W /easement acquisition
- Submerged placement being the least expensive and created land ridge the most expensive
- > Floating pipe alternative is cost prohibitive.



Pipeline Cost Summary

	Minimum	Maximum
Segment 1	\$85,683,000	\$99,991,000
Segment 2	\$83,004,000	\$93,729,000
Segment 3	\$86,532,000	\$97,132,000
Segment 4	\$43,233,000	\$48,232,000
TOTAL PIPELINE CONSTRUCTION COST	\$298,452,000	\$339,085,000

Containment Dikes- Cost Summary

Placement Area	Minimum	Maximum
Bay Raccourci	\$2,115,000	\$7,045,000
Falgout Canal	\$675,000	\$2,260,000
Lake Tambour	\$1,730,000	\$5,760,000
Wonder Lake	\$735,000	\$2,445,000
TOTAL CONSTRUCTION COST	\$5,255,000	\$17,510,000

Bay Raccourci (Segment 1)

> Dredging: \$500M

➤ Intake Structure: \$6M

Containment Dikes \$7M

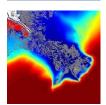
➤ Pipeline: \$100M

> Total Cost- Segment 1 : \$613M

	Dredgi	ng & Intake S	itructure (\$ 1	Willions)		Pipeli	ine Cor	ridor And	Placen	nent Area	Dike C	onstructio	in (\$ N	Millions)	
	Dredging'	, 50 M CY		latela		Segme	nt 1	Segmer	nt 2	Segme	nt 3	Segmen	nt 4		
Segment 1	Segment 2	Segment 3	Segment 4	Intake Structure**	Sub-Total	Dinalina	Dika	Pipeline	Dike	Dinalina	Nika	Dinalina	Dika		
\$10/cy	\$12/cy	\$13/cy	\$17/cy	Structure		Преше	DIRC.	Преше	L'INC.	преше	DIRC	преше	DINC	Sub-Total	Total
\$500				\$6	\$506	\$100	\$7							\$107	\$613
	\$600				\$600			\$193	\$3					\$196	\$796
		\$650		\$6	\$656					\$291	\$6			\$297	\$953
			\$850		\$850							\$339	\$3	\$342	\$1,192
\$500	\$600	\$650	\$850	\$12	\$2,612	\$100	\$7	\$193	\$3	\$291	\$6	\$339	\$3	\$942	\$3,554

^{*} Operational Costs Included in the Dredging Cost

Segment 1 Segment 2 Segment 3 Segment4 Total



^{**} Two replacements

Marsh Creation Cost – Bay Raccourci

- > \$98,897/acre (4.0 ft. fill)
- > \$123,622/acre (5.0 ft. fill)

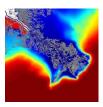
MINIMUM COS	T DER ACRE	•
DESCRIPTION	QUANTITY	UNIT
CUT VOLUME	50,000,000	C.Y.
FILL VOLUME	40,000,000	C.Y.
FILL VOLUME	1,080,000,000	C.F.
AVERAGE FILL HEIGHT	4.0	F.T.
AREA OF FILL	270,000,000	S.F.
AREA OF FILL	6,198	ACRE
TOTAL COST OF SEGMENT 1	\$ 613,000,000	\$
COST OF SEGMENT 1 PER ACRE	\$ 98,897	\$

ı	· · · · · · · · · · · · · · · · · · ·	
ı	TOTAL CONSTRUCTION COST PER ACRE	\$98,897

MAXIMUM COS	ST PER ACRE	
DESCRIPTION	QUANITIY	UNIT
CUT VOLUME	50,000,000	C.Y.
FILL VOLUME	40,000,000	C.Y.
FILL VOLUME	1,080,000,000	C.F.
AVERAGE FILL HEIGHT	5.0	F.T.
AREA OF FILL	216,000,000	S.F.
AREA OF FILL	4,959	ACRE
TOTAL COST OF SEGMENT 1	\$ 613,000,000	\$
COST OF SEGMENT 1 PER ACRE	\$ 123,622	\$

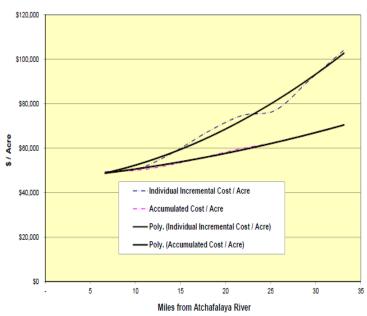
|--|

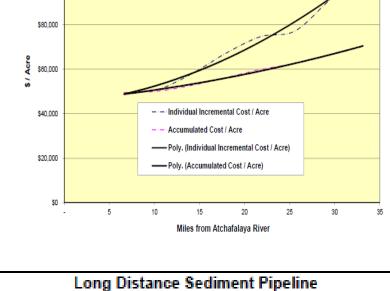
NOTE: ASSUME CUT:FILL RATIO OF 1.25 FOR REPRESENTATION OF COST

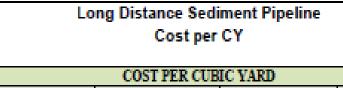


Marsh Creation Cost – Falgout Canal

- > \$96,316/acre (3.0 ft. fill)
- > \$128,421/acre (4.0 ft. fill)


MINIMUM COST PER ACRE							
DESCRIPTION	QUANITIY	UNIT					
CUT VOLUME	50,000,000	C.Y.					
FILL VOLUME	40,000,000	C.Y.					
FILL VOLUME	1,080,000,000	C.F.					
AVERAGE FILL HEIGHT	3.0	F.T.					
AREA OF FILL	360,000,000	S.F.					
AREA OF FILL	8,264	ACRE					
TOTAL COST OF SEGMENT 2	\$ 796,000,000	\$					
COST OF SEGMENT 2 PER ACRE	\$ 96,316	\$					

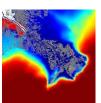

٠		
	TOTAL CONSTRUCTION COST PER ACRE	\$06.216
	TOTAL CONSTRUCTION COST FER ACKE	990,310


MAXIMUM COST PER ACRE						
DESCRIPTION	QUANITTY	UNIT				
CUT VOLUME	50,000,000	C.Y.				
FILL VOLUME	40,000,000	C.Y.				
FILL VOLUME	1,080,000,000	C.F.				
AVERAGE FILL HEIGHT	4.0	F.T.				
AREA OF FILL	270,000,000	S.F.				
AREA OF FILL	6,198	ACRE				
TOTAL COST OF SEGMENT 2	\$ 796,000,000	\$				
COST OF SEGMENT 2 PER ACRE	\$ 128,421	\$				

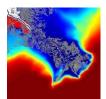
TOTAL CONSTRUCTION COST PER ACRE	\$128,421
TOTAL CONSTRUCTION COST TERMICAL	0120,721

NOTE: ASSUME CUT:FILL RATIO OF 1.25 FOR REPRESENTATION OF COST

DESCRIPTION	COST		CUBIC YARDS	COST/CY	
Segment 1	\$	613,000,000	50,000,000	\$12.26	
Segment 2	\$	796,000,000	50,000,000	\$15.92	
Segment 3	\$	953,000,000	50,000,000	\$19.06	
Segment 4	Š	1,192,000,000	50,000,000	\$23.84	
TOTAL	5	3,554,000,000	\$200,000,000	\$17.77	



- > ATCH-137E is recommended as borrow area
- Cutter Head dredge operation is preferable
- Intake structure in the Horseshoe Bend vicinity
- > Tennessee Gas Pipeline corridor as the LDSP corridor
- ➤ 42 miles of trunk line,15 miles of additional R-O-W, 10 booster pumps are required
- Combination of four alternative pipeline placement methods
- Traditional hydraulic placement with a combination of confined and unconfined dike is recommended



The entire project is estimated to cost \$3.554 B, whereas a project with Segments 1 and 2 are estimated at \$613M and \$802, respectively

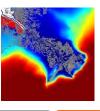
Segment 1 could be completed in 6-7 years

Marsh Creation Cost:

Bay Raccourci: \$98,897/acre - \$123,622/acre; 7,700-6,200 acres; 4-5 ft. fill

Falgout Canal: \$96,316/acre - \$128,421/acre; 10,300-7,700 acres; 3-4 ft. fill

Cost/cubic yard:



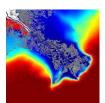
- > Segment 2 (50 m cy): \$15.93/cy
- > Segment 3 (50 m cy): \$19.16/cy
- Segment 4 (50 m cu): \$23.84/cy
- > Total: (200 m cy): \$17.77/cy

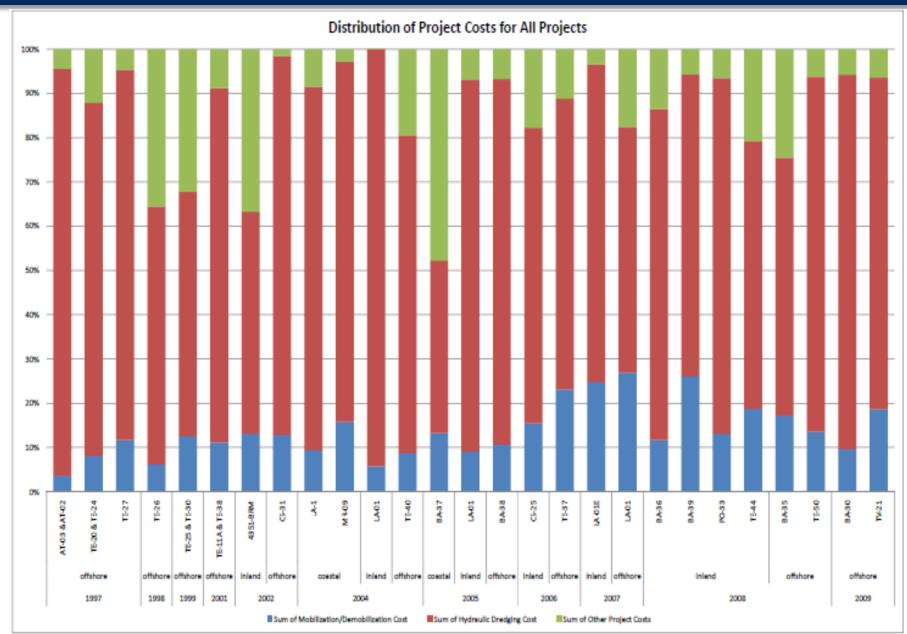
Detailed analysis of Segment 1 and 2 construction is required and a Phase 2 of this feasibility study is recommended

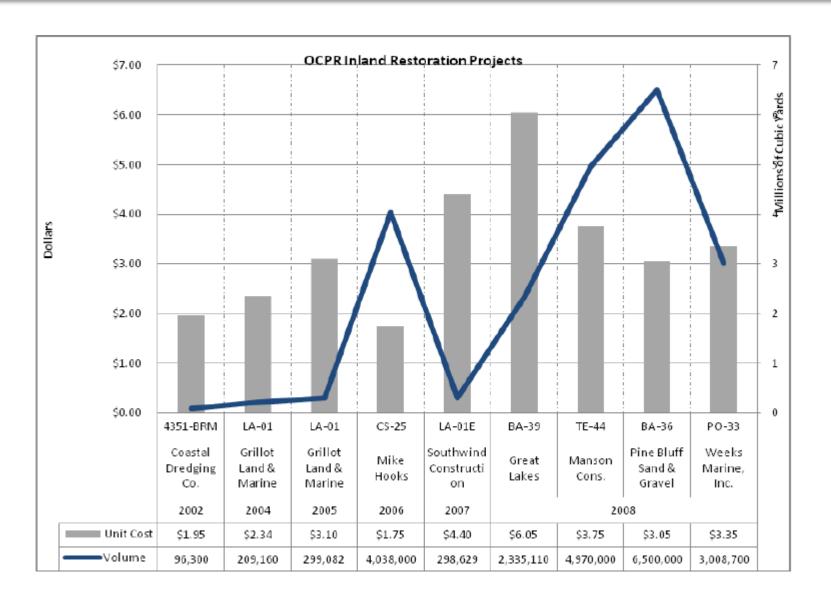
Questions?

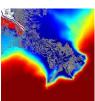
Year	Number of Projects	Total Number of Bidders	Average Number of Bidders	Average Unit Cost per Cubic Yard	Cubic Yards Dredged	Total Mobilization Demobilization Cost	Total Project Cost
1997	4	14	3.50	1.63	15,568,000	\$2,379,401.00	\$30,550,275.00
1998	1	3	3.00	2.67	867,600	\$196,000.00	\$3,144,125.00
1999	1	4	4.00	2.15	2,143,000	\$1,050,000.00	\$8,347,950.00
2001	1	2	2.00	3.05	2,130,000	\$900,000.00	\$8,105,150.00
2002	2	9	4.50	4.50	611,300	\$2,052,000.00	\$15,940,081.15
2004	4	16	4.00	2.46	4,441,654	\$1,215,000.00	\$13,347,634.05
2005	3	8	2.67	2.87	5,553,914	\$3,863,000.00	\$32,448,706.75
2006	2	5	2.50	4.70	4,868,650	\$4,425,000.00	\$23,827,522.50
2007	2	9	4.50	4.52	593,629	\$1,119,890.00	\$4,300,784.16
2008	6	17	2.83	5.05	21,982,010	\$24,715,000.00	\$145.581.279.50
2009	2	6	3.00	4.50	6,165,000	\$5,200,000.00	\$41,677,840.00
Grand Total	28	93	3.32	3.56	64,924,757	\$47,115,291.00	\$327,271,348.11

Table 1 OCPR Restoration Project Summary 1997-2009.

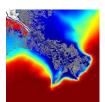








- > ATCH-137 E is selected as the potential borrow area
- ➤ Initial volume: 19.5 Million Cubic Yards (east borrow area)
- ➤ Average Annual Refill Volume: 5.6 Million Cubic Yards
- ➤ Assumed annual sediment demand: 5 Million Cubic Yards/Year
- ➤ Assumed total sediment demand for this project: 50 Million Cubic Yard
- Considering the refill rates, the project could be completed in 6.5 years (with certain assumptions)



- > Beneficial Use of Dredge Material Vs. Dedicated Dredging
 - ➤ 3.9 million cubic yards/year availability
 - > Not a sustainable source of sediment
 - ➤ Uncertainty regarding the availability due to unreliable predictions of sediment availability and unpredictable funding streams
 - Crew Boat Cut- Authorization to realign navigation channel

